Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Determining the repertoire of a microbe's molecular functions is a central question in microbial biology. Modern techniques achieve this goal by comparing microbial genetic material against reference databases of functionally annotated genes/proteins or known taxonomic markers such as 16S rRNA. Here, we describe a novel approach to exploring bacterial functional repertoires without reference databases. Our Fusion scheme establishes functional relationships between bacteria and assigns organisms to Fusion-taxa that differ from otherwise defined taxonomic clades. Three key findings of our work stand out. First, bacterial functional comparisons outperform marker genes in assigning taxonomic clades. Fusion profiles are also better for this task than other functional annotation schemes. Second, Fusion-taxa are robust to addition of novel organisms and are, arguably, able to capture the environment-driven bacterial diversity. Finally, our alignment-free nucleic acid-based Siamese Neural Network model, created using Fusion functions, enables finding shared functionality of very distant, possibly structurally different, microbial homologs. Our work can thus help annotate functional repertoires of bacterial organisms and further guide our understanding of microbial communities.more » « less
-
The past two decades of analytical efforts have highlighted how much more remains to be learned about the human genome and, particularly, its complex involvement in promoting disease development and progression. While numerous computational tools exist for the assessment of the functional and pathogenic effects of genome variants, their precision is far from satisfactory, particularly for clinical use. Accumulating evidence also suggests that the human microbiome's interaction with the human genome plays a critical role in determining health and disease states. While numerous microbial taxonomic groups and molecular functions of the human microbiome have been associated with disease, the reproducibility of these findings is lacking. The human microbiome–genome interaction in healthy individuals is even less well understood. This review summarizes the available computational methods built to analyze the effect of variation in the human genome and microbiome. We address the applicability and precision of these methods across their possible uses. We also briefly discuss the exciting, necessary, and now possible integration of the two types of data to improve the understanding of pathogenicity mechanisms.more » « less
-
Abstract BackgroundAccumulating evidence suggests that the human microbiome impacts individual and public health. City subway systems are human-dense environments, where passengers often exchange microbes. The MetaSUB project participants collected samples from subway surfaces in different cities and performed metagenomic sequencing. Previous studies focused on taxonomic composition of these microbiomes and no explicit functional analysis had been done till now. ResultsAs a part of the 2018 CAMDA challenge, we functionally profiled the available ~ 400 subway metagenomes and built predictor for city origin. In cross-validation, our model reached 81% accuracy when only the top-ranked city assignment was considered and 95% accuracy if the second city was taken into account as well. Notably, this performance was only achievable if the similarity of distribution of cities in the training and testing sets was similar. To assure that our methods are applicable without such biased assumptions we balanced our training data to account for all represented cities equally well. After balancing, the performance of our method was slightly lower (76/94%, respectively, for one or two top ranked cities), but still consistently high. Here we attained an added benefit of independence of training set city representation. In testing, our unbalanced model thus reached (an over-estimated) performance of 90/97%, while our balanced model was at a more reliable 63/90% accuracy. While, by definition of our model, we were not able to predict the microbiome origins previously unseen, our balanced model correctly judged them to be NOT-from-training-cities over 80% of the time.Our function-based outlook on microbiomes also allowed us to note similarities between both regionally close and far-away cities. Curiously, we identified the depletion in mycobacterial functions as a signature of cities in New Zealand, while photosynthesis related functions fingerprinted New York, Porto and Tokyo. ConclusionsWe demonstrated the power of our high-speed function annotation method,mi-faser,by analysing ~ 400 shotgun metagenomes in 2 days, with the results recapitulating functional signals of different city subway microbiomes. We also showed the importance of balanced data in avoiding over-estimated performance. Our results revealed similarities between both geographically close (Ofa and Ilorin) and distant (Boston and Porto, Lisbon and New York) city subway microbiomes. The photosynthesis related functional signatures of NYC were previously unseen in taxonomy studies, highlighting the strength of functional analysis.more » « less
-
Abstract MotivationThe rapid drop in sequencing costs has produced many more (predicted) protein sequences than can feasibly be functionally annotated with wet-lab experiments. Thus, many computational methods have been developed for this purpose. Most of these methods employ homology-based inference, approximated via sequence alignments, to transfer functional annotations between proteins. The increase in the number of available sequences, however, has drastically increased the search space, thus significantly slowing down alignment methods. ResultsHere we describe homology-derived functional similarity of proteins (HFSP), a novel computational method that uses results of a high-speed alignment algorithm, MMseqs2, to infer functional similarity of proteins on the basis of their alignment length and sequence identity. We show that our method is accurate (85% precision) and fast (more than 40-fold speed increase over state-of-the-art). HFSP can help correct at least a 16% error in legacy curations, even for a resource of as high quality as Swiss-Prot. These findings suggest HFSP as an ideal resource for large-scale functional annotation efforts. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
An official website of the United States government
